Close
Register
Close Window

CS3 Coursenotes

Chapter 2 Week 3

Show Source |    | About   «  1.1. Algorithm Analysis   ::   Contents   ::   2.2. Binary Trees Part 1  »

2.1. Lists

2.1.1. Lists

2.1.1.1. Lists

A list is a finite, ordered sequence of data items.

Important concept: List elements have a position.

Notation: \(<a_0, a_1, …, a_{n-1}>\)

What operations should we implement?

2.1.1.2. List Implementation Concepts

Our list implementation will support the concept of a current position.

Operations will act relative to the current position.

\(<20, 23\ |\ 12, 15>\)

2.1.1.3. List ADT (1)

// List class ADT. Generalize by using "Object" for the element type.
public interface List { // List class ADT
  // Remove all contents from the list, so it is once again empty
  public void clear();

  // Insert "it" at the current location
  // The client must ensure that the list's capacity is not exceeded
  public boolean insert(Object it);

  // Append "it" at the end of the list
  // The client must ensure that the list's capacity is not exceeded
  public boolean append(Object it);

  // Remove and return the current element
  public Object remove() throws NoSuchElementException;

2.1.1.4. List ADT (2)

  // Set the current position to the start of the list
  public void moveToStart();

  // Set the current position to the end of the list
  public void moveToEnd();

  // Move the current position one step left, no change if already at beginning
  public void prev();

  // Move the current position one step right, no change if already at end
  public void next();

  // Return the number of elements in the list
  public int length();

2.1.1.5. List ADT (3)

  // Return the position of the current element
  public int currPos();

  // Set the current position to "pos"
  public boolean moveToPos(int pos);

  // Return true if current position is at end of the list
  public boolean isAtEnd();

  // Return the current element
  public Object getValue() throws NoSuchElementException;
  
  public boolean isEmpty();
}

2.1.1.6. List ADT Examples

List: \(<12\ |\ 32, 15>\)

L.insert(99);

Result: \(<12\ |\ 99, 32, 15>\)

Iterate through the whole list:

for (L.moveToStart(); !L.isAtEnd(); L.next()) {
  it = L.getValue();
  doSomething(it);
}

2.1.1.7. List Find Function

// Return true if k is in list L, false otherwise
static boolean find(List L, Object k) {
  for (L.moveToStart(); !L.isAtEnd(); L.next())
    if (k == L.getValue()) return true; // Found k
  return false;                         // k not found
}

2.1.1.8. Array-Based List Class (1)

class AList implements List {
  private Object listArray[];             // Array holding list elements
  private static final int DEFAULT_SIZE = 10; // Default size
  private int maxSize;                    // Maximum size of list
  private int listSize;                   // Current # of list items
  private int curr;                       // Position of current element
  // Constructors
  // Create a new list object with maximum size "size"
  AList(int size) {
    maxSize = size;
    listSize = curr = 0;
    listArray = new Object[size];         // Create listArray
  }
  // Create a list with the default capacity
  AList() { this(DEFAULT_SIZE); }          // Just call the other constructor

2.1.1.9. Array-Based List Insert

Settings

Proficient Saving... Error Saving
Server Error
Resubmit

2.1.1.11. Linked List Position (1)

Settings

Proficient Saving... Error Saving
Server Error
Resubmit

2.1.1.12. Linked List Position (2)

Settings

Proficient Saving... Error Saving
Server Error
Resubmit

2.1.1.13. Linked List Position (3)


2.1.1.14. Linked List Class (1)

Settings

Proficient Saving... Error Saving
Server Error
Resubmit

2.1.1.15. Linked List Class (2)

Settings

Proficient Saving... Error Saving
Server Error
Resubmit

2.1.1.16. Insertion

Settings

Proficient Saving... Error Saving
Server Error
Resubmit

2.1.1.17. Removal

Settings

Proficient Saving... Error Saving
Server Error
Resubmit

2.1.1.18. Prev

Settings

Proficient Saving... Error Saving
Server Error
Resubmit

2.1.1.19. Overhead

  • Container classes store elements. Those take space.

  • Container classes also store additional space to organize the elements.

    • This is called overhead

  • The overhead fraction is: overhead/total space

2.1.1.20. Comparison of Implementations

  • Array-Based Lists:
    • Insertion and deletion are \(\Theta(n)\).

    • Prev and direct access are \(\Theta(1)\).

    • Array must be allocated in advance.

    • No overhead if all array positions are full.

  • Linked Lists:
    • Insertion and deletion are \(\Theta(1)\).

    • Prev and direct access are \(\Theta(n)\).

    • Space grows with number of elements.

    • Every element requires overhead.

2.1.1.21. Space Comparison

“Break-even” point:

\(DE = n(P + E)\)

\(n = \frac{DE}{P + E}\)

E: Space for data value.

P: Space for pointer.

D: Number of elements in array.

2.1.1.22. Space Example

  • Array-based list: Overhead is one pointer (8 bytes) per position in array – whether used or not.

  • Linked list: Overhead is two pointers per link node one to the element, one to the next link

  • Data is the same for both.

  • When is the space the same?

    • When the array is half full

2.1.1.23. Freelist

System new and garbage collection are slow.

  • Add freelist support to the Link class.

Settings

Proficient Saving... Error Saving
Server Error
Resubmit

2.1.1.24. Doubly Linked Lists

2.1.1.25. Doubly Linked Node (1)

class Link {            // Doubly linked list node
  private Object e;     // Value for this node
  private Link n;       // Pointer to next node in list
  private Link p;       // Pointer to previous node

  // Constructors
  Link(Object it, Link inp, Link inn) { e = it;  p = inp; n = inn; }
  Link(Link inp, Link inn) { p = inp; n = inn; }

  // Get and set methods for the data members
  public Object element() { return e; }                     // Return the value
  public Object setElement(Object it) { return e = it; }    // Set element value
  public Link next() { return n; }                          // Return next link
  public Link setNext(Link nextval) { return n = nextval; } // Set next link
  public Link prev() { return p; }                          // Return prev link
  public Link setPrev(Link prevval) { return p = prevval; } // Set prev link
}

2.1.1.26. Doubly Linked Insert

Settings

Proficient Saving... Error Saving
Server Error
Resubmit

2.1.1.27. Doubly Linked Remove

Settings

Proficient Saving... Error Saving
Server Error
Resubmit

   «  1.1. Algorithm Analysis   ::   Contents   ::   2.2. Binary Trees Part 1  »

Close Window