The following table shows the symbols commonly used to express sets
and their relationships.
Table 2.1.1
\[\begin{split}\begin{array}{l|l}
\{1, 4\}& \mbox{A set composed of the members 1 and 4}\\
\{\mathsf{x}\, |\, \mathsf{x}\ \mbox{is a positive integer}\}&
\mbox{A set definition using a set former}\\
&\qquad \mbox{Example: the set of all positive integers}\\
\mathsf{x} \in \mathbf{P}&\mathsf{x}\ \mbox{is a member of set}\ \mathbf{P}\\
\mathsf{x} \notin \mathbf{P}&\mathsf{x}\ \mbox{is not a member of set}\ \mathbf{P}\\
\emptyset&\mbox{The null or empty set}\\
|\mathbf{P}|& \mbox{Cardinality: size of set}\ \mathbf{P}
\mbox{or number of members for set}\ \mathbf{P}\\
\mathbf{P}\,\subseteq\,\mathbf{Q},
\mathbf{Q}\,\supseteq\,\mathbf{P}&
\mbox{Set}\ \mathbf{P}\ \mbox{is included in set}\ \mathbf{Q},\\
&\qquad \mbox{set}\ \mathbf{P}\ \mbox{is a subset of set}\ \mathbf{Q},\\
&\qquad \mbox{set}\ \mathbf{Q}\ \mbox{is a superset of set}\ \mathbf{P}\\
\mathbf{P}\,\cup\,\mathbf{Q} &
\mbox{Set Union: all elements appearing in}
\ \mathbf{P}\ \mbox{OR}\ \mathbf{Q}\\
\mathbf{P}\,\cap\,\mathbf{Q} &
\mbox{Set Intersection: all elements appearing in}\ \mbox{P}
\ \mbox{AND}\ \mathbf{Q}\\
\mathbf{P}\,-\,\mathbf{Q} &
\mbox{Set difference: all elements of set}
\ \mathbf{P}\ \mbox{NOT in set}\ \mathbf{Q}\\
\mathbf{P}\,\times\,\mathbf{Q} &
\mbox{Set (Cartesian) Product: yields a set of ordered pairs}\\
\end{array}\end{split}\]