7.3. PDAs and Context Free Languages¶
7.3.1. PDAs and Context Free Languages¶
Now we want to show that given an NPDA, we can construct a CFG. But first, we will show a result to make the next proof easier.
Theorem: Given a NPDA M, ∃ a NPDA M′ such that all transitions have the form δ(qi,a,A)={c1,c2,…cn} where
Each move either increases or decreases stack contents by a single symbol.
Proof: (sketch)
Theorem: If L=L(M) for some NPDA M, then L is a CFL.
Note
Want to show that each NPDA represents a CFL, so we will take a NPDA M and convert it to a CFG.
It will be an easier construction if we take the NPDA and put all the transitions in a simpler form.
Proof:
Given NPDA M, first, construct an equivalent NPDA M′ that will be easier to work with. Construct M′ such that1. M′ accepts if stack is empty2. Each move increases or decreases stack content by a single symbol. (Can only push 2 variables or no variables with each transition.)M′=(Q,Σ,Γ,δ,q0,z,F)Construct G=(V,Σ,S,P) whereV={(qicqj) | qi,qj∈Q,c∈Γ}(Some of these variables will be useless.)(qicqj) represents “starting at state qi the stack contents are cw,w∈Γ∗, some path is followed to state qj and the contents of the stack are now w”.Goal: (q0zqf) which will be the start symbol in the grammar.Meaning: We start in state q0 with z on the stack and process the input tape. Eventually we will reach the final state qf and the stack will be empty. (Along the way we may push symbols on the stack, but these symbols will be popped from the stack).(NOTE: Machine accepts by empty stack, but it is such that there is only 1 final state in which the machine accepts by final state.)To construct the productions in P:1) Replaceby(qiAqj)→awhere the stack changes are:qi (some path →) qjstack:Astack:X1X1X2X2Xn_Xn_2) Replaceby(qiAqk)→a(qjBql)(qlCqk) for all ql,qk∈Qqi (path →) qj (path →) ql (path →) qkBACCX1X1X1X1X2X2X2X2Xn_Xn_Xn_Xn_This will create some useless variables, but that’s ok.Must show that the constructed grammar G is such that L(G)=L(M′). That is, w∈L(G)iff w∈L(M). (see book) QED.
Example 7.3.1
L(M)={aa∗b}, M=(Q,Σ,Γ,δ,q0,z,F), Q={q0,q1,q2,q3}, Σ={a,b},Γ={A,z}, F={}. M accepts by empty stack.
From transition 1(q0Aq1)→bFrom transition 2(q1zq2)→λFrom transition 3(q0Aq3)→aFrom transition 4(q0zq0)→a(q0Aq0)(q0zq0)|a(q0Aq1)(q1zq0)|a(q0Aq2)(q2zq0)|a(q0Aq3)(q3zq0)(q0zq1)→a(q0Aq0)(q0zq1)|a(q0Aq1)(q1zq1)|a(q0Aq2)(q2zq1)|a(q0Aq3)(q3zq1)(q0zq2)→a(q0Aq0)(q0zq2)|a(q0Aq1)(q1zq2)|a(q0Aq2)(q2zq2)|a(q0Aq3)(q3zq2)(q0zq3)→a(q0Aq0)(q0zq3)|a(q0Aq1)(q1zq3)|a(q0Aq2)(q2zq3)|a(q0Aq3)(q3zq3)From transition 5(q3zq0)→(q0Aq0)(q0zq0)|(q0Aq1)(q1zq0)|(q0Aq2)(q2zq0)|(q0Aq3)(q3zq0)(q3zq1)→(q0Aq0)(q0zq1)|(q0Aq1)(q1zq1)|(q0Aq2)(q2zq1)|(q0Aq3)(q3zq1)(q3zq2)→(q0Aq0)(q0zq2)|(q0Aq1)(q1zq2)|(q0Aq2)(q2zq2)|(q0Aq3)(q3zq2)(q3zq3)→(q0Aq0)(q0zq3)|(q0Aq1)(q1zq3)|(q0Aq2)(q2zq3)|(q0Aq3)(q3zq3)
(q0,aaab,z)⊢(q0,aab,Az)⊢(q3,ab,z)⊢(q0,ab,Az)⊢(q3,b,z)⊢(q0,b,Az)⊢(q1,λ,z)⊢(q2,λ,λ)
(q0zq2)⇒a(q0Aq3)(q3zq2)⇒aa(q3zq2)⇒aa(q0Aq3)(q3zq2)⇒aaa(q3zq2)⇒aaa(q0Aq1)(q1zq2)⇒aaab(q1zq2)⇒aaab