Close
Close Window

CS4114 Formal Languages and Automata

Chapter 8 Properties of Context-free Languages

Show Source |    | About   «  7.4. Deterministic Pushdown Automata   ::   Contents   ::   9.1. Turing Machines  »

8.1. Properties of Context-Free Languages

8.1.1. Properties of Context-Free Languages

1 / 25 Settings
<<<>

Similar to regular languages, CFLs are closed under certain properties.

Proficient Saving... Error Saving
Server Error
Resubmit

8.1.2. Proving a language is not CFL - Using Pumping Lemma

1 / 17 Settings
<<<>

For regular languages, we developed a pumping lemma that can help us prove that a language is not regular. While we can't use the same pumping lemma for CFLs, we will see that there is a similar argument to be made that will lead to a CFL pumping lemma that we can make use of to prove certain languages are not CFL.

Proficient Saving... Error Saving
Server Error
Resubmit

8.1.3. Pumping Lemma Example 1

1 / 30 Settings
<<<>

Prove that $L = \{a^nb^nc^n: n\ge 1\}$ is not a CFL.

Proficient Saving... Error Saving
Server Error
Resubmit

8.1.4. Pumping Lemma Example 2

1 / 19 Settings
<<<>

Prove that $L = \{a^nb^nc^p : p > n > 0\}$ is not a CFL.

Proficient Saving... Error Saving
Server Error
Resubmit

8.1.5. Pumping Lemma Example 3

1 / 11 Settings
<<<>

Prove that $L = \{a^jb^k: k = j^2\}$ is not a CFL.

Proficient Saving... Error Saving
Server Error
Resubmit

8.1.6. Pumping Lemma Example 4

1 / 20 Settings
<<<>

Prove that the following language is not a CFL:
$L = \{w{\bar w}w : w\in \Sigma^*\},\ \Sigma = \{a, b\}$, where $\bar w$ is the string $w$ with each occurence of $a$ replaced by $b$ and each occurence of $b$ replaced by $a$.

Proficient Saving... Error Saving
Server Error
Resubmit

8.1.7. Pumping Lemma Example 5

1 / 29 Settings
<<<>

Prove that $L = \{ a^{2n}b^{2m}c^nd^m : n,m \ge 0 \}$ is not a CFL

Proficient Saving... Error Saving
Server Error
Resubmit

   «  7.4. Deterministic Pushdown Automata   ::   Contents   ::   9.1. Turing Machines  »

nsf
Close Window