Close
Register
Close Window

Show Source |    | About   «  9.11. Implementing Recursion   ::   Contents   ::   9.13. Linked Queues  »

9.12. Queues

9.12.1. Queue Terminology and Implementation

Like the stack, the queue is a list-like structure that provides restricted access to its elements. Queue elements may only be inserted at the back (called an enqueue operation) and removed from the front (called a dequeue operation). Queues operate like standing in line at a movie theater ticket counter. If nobody cheats, then newcomers go to the back of the line. The person at the front of the line is the next to be served. Thus, queues release their elements in order of arrival. In Britain, a line of people is called a “queue”, and getting into line to wait for service is called “queuing up”. Accountants have used queues since long before the existence of computers. They call a queue a “FIFO” list, which stands for “First-In, First-Out”. Here is a sample queue ADT. This section presents two implementations for queues: the array-based queue and the linked queue.

public interface Queue { // Queue class ADT
  // Reinitialize queue
  public void clear();

  // Put element on rear
  public boolean enqueue(Object it);

  // Remove and return element from front
  public Object dequeue();

  // Return front element
  public Object frontValue();

  // Return queue size
  public int length();

  // Return true if the queue is empty
  public boolean isEmpty();
}
public interface Queue<E> { // Queue class ADT
  // Reinitialize queue
  public void clear();

  // Put element on rear
  public boolean enqueue(E it);

  // Remove and return element from front
  public E dequeue();

  // Return front element
  public E frontValue();

  // Return queue size
  public int length();
  
  //Tell if the queue is empty or not
  public boolean isEmpty();
}

9.12.1.1. Array-Based Queues

The array-based queue is somewhat tricky to implement effectively. A simple conversion of the array-based list implementation is not efficient.

Settings

Proficient Saving... Error Saving
Server Error
Resubmit


Settings

Proficient Saving... Error Saving
Server Error
Resubmit


Settings

Proficient Saving... Error Saving
Server Error
Resubmit

9.12.1.2. The Circular Queue

Settings

Proficient Saving... Error Saving
Server Error
Resubmit


Settings

Proficient Saving... Error Saving
Server Error
Resubmit

If the value of front is fixed, then \(n+1\) different values for rear are needed to distinguish among the \(n+1\) states. However, there are only \(n\) possible values for rear unless we invent a special case for, say, empty queues. This is an example of the Pigeonhole Principle. The Pigeonhole Principle states that, given \(n\) pigeonholes and \(n+1\) pigeons, when all of the pigeons go into the holes we can be sure that at least one hole contains more than one pigeon. In similar manner, we can be sure that two of the \(n+1\) states are indistinguishable by the \(n\) relative values of front and rear. We must seek some other way to distinguish full from empty queues.

One obvious solution is to keep an explicit count of the number of elements in the queue, or at least a Boolean variable that indicates whether the queue is empty or not. Another solution is to make the array be of size \(n+1\), and only allow \(n\) elements to be stored. Which of these solutions to adopt is purely a matter of the implementor’s taste in such affairs. Our choice here is to use an array of size \(n+1\).

Here is an array-based queue implementation.

class AQueue implements Queue {
  private Object queueArray[]; // Array holding queue elements
  private static final int DEFAULT_SIZE = 10;
  private int maxSize;         // Maximum size of queue
  private int front;           // Index of front element
  private int rear;            // Index of rear element

  // Constructors
  AQueue(int size) {
    maxSize = size + 1;          // One extra space is allocated
    rear = 0; front = 1;
    queueArray = new Object[maxSize];  // Create queueArray
  }
  AQueue() { this(DEFAULT_SIZE); }

  // Reinitialize
  public void clear() { rear = 0; front = 1; }

  // Put "it" in queue
  public boolean enqueue(Object it) {
    if (((rear+2) % maxSize) == front) return false;  // Full
    rear = (rear+1) % maxSize; // Circular increment
    queueArray[rear] = it;
    return true;
  }

  // Remove and return front value
  public Object dequeue() {
    if(length() == 0) return null;
    Object it = queueArray[front];
    front = (front+1) % maxSize; // Circular increment
    return it;
  }

  // Return front value
  public Object frontValue() {
    if (length() == 0) return null;
    return queueArray[front];
  }

  // Return queue size
  public int length() { return ((rear+maxSize) - front + 1) % maxSize; }

  // Check if the queue is empty
  public boolean isEmpty() { return front - rear == 1; }
}
class AQueue<E> implements Queue<E> {
  private E queueArray[];      // Array holding queue elements
  private static final int DEFAULT_SIZE = 10;
  private int maxSize;         // Maximum size of queue
  private int front;           // Index of front element
  private int rear;            // Index of rear element

  // Constructors
  @SuppressWarnings("unchecked") // Generic array allocation
  AQueue(int size) {
    maxSize = size+1;          // One extra space is allocated
    rear = 0; front = 1;
    queueArray = (E[])new Object[maxSize];  // Create queueArray
  }
  AQueue() { 
    this(DEFAULT_SIZE); 
  }

  // Reinitialize
  public void clear() {
    rear = 0; front = 1; 
  }

  // Put "it" in queue
  public boolean enqueue(E it) {
    if (((rear+2) % maxSize) == front) {
      return false;  // Full
    }
    rear = (rear+1) % maxSize; // Circular increment
    queueArray[rear] = it;
    return true;
  }

  // Remove and return front value
  public E dequeue() {
    if(length() == 0) {
      return null;
    }
    E it = queueArray[front];
    front = (front+1) % maxSize; // Circular increment
    return it;
  }

  // Return front value
  public E frontValue() {
    if (length() == 0) {
      return null;
    }
    return queueArray[front];
  }

  // Return queue size
  public int length() {
    return ((rear+maxSize) - front + 1) % maxSize; 
  }
  
  //Tell if the queue is empty or not
  public boolean isEmpty() { 
    return front - rear == 1; 
  }
}

9.12.1.3. Array-based Queue Implementation

Settings

Proficient Saving... Error Saving
Server Error
Resubmit

In this implementation, the front of the queue is defined to be toward the lower numbered positions in the array (in the counter-clockwise direction in the circular array), and the rear is defined to be toward the higher-numbered positions. Thus, enqueue increments the rear pointer (modulus maxSize), and dequeue increments the front pointer. Implementation of all member functions is straightforward.

9.12.2. Array-based Dequeue Practice

   «  9.11. Implementing Recursion   ::   Contents   ::   9.13. Linked Queues  »

Close Window