Show Source | | About « 4.4. Comparison :: Contents :: 5.2. Huffman Coding »
Position01234567891011Parent−−00112233445Left Child1357911−−−−−−−−−−−−Right Child246810−−−−−−−−−−−−−−Left Sibling−−−−1−−3−−5−−7−−9−−Right Sibling−−2−−4−−6−−8−−10−−−−
0 / 0 Settings <<<>>> 8808518327237344255766748860910Created with Raphaël 2.1.28885837273648604257 Saving... Server Error Resubmit
1 / 10 Settings <<<>>> Let's look at an efficient way to build the heap. We are going to make a max-heap from a set of input values. 10213243546576Created with Raphaël 2.1.21234567 Saving... Server Error Resubmit
1 / 13 Settings <<<>>> Let's look at a visualization to explain why the cost for buildheap is $\theta(n)$. We will use an example with 31 records in the heap. This means that there are 16 leaf nodes and 15 internal nodes. Created with Raphaël 2.1.20123456789101112131415161718192021222324252627282930Created with Raphaël 2.1.2depth 4 -------depth 3 ----------depth 2 ----------------depth 1 ----------------------------depth 0 ----------------------------------------------------$2^3$$2^2$$2$$1$ depth = 4 $2^3$$2^2$$2$$1$-1-1-1-1 Saving... Server Error Resubmit
0 / 0 Settings <<<>>> 88085183272373442557667488609Created with Raphaël 2.1.28885837273648604257 Saving... Server Error Resubmit
Contact Us || Privacy | | License « 4.4. Comparison :: Contents :: 5.2. Huffman Coding »