Show Source | | About « 4.4. Comparison :: Contents :: 5.2. Huffman Coding »
Position01234567891011Parent−−00112233445Left Child1357911−−−−−−−−−−−−Right Child246810−−−−−−−−−−−−−−Left Sibling−−−−1−−3−−5−−7−−9−−Right Sibling−−2−−4−−6−−8−−10−−−−
0 / 0 Settings <<<>>> 8808518327237344255766748860910Created with Raphaël 2.1.28885837273648604257 Saving... Server Error Resubmit
1 / 10 Settings <<<>>> Let's look at an efficient way to build the heap. We are going to make a max-heap from a set of input values. 10213243546576Created with Raphaël 2.1.21234567 Saving... Server Error Resubmit
1 / 13 Settings <<<>>> Let's look at a visualization to explain why the cost for buildheap is θ(n). We will use an example with 31 records in the heap. This means that there are 16 leaf nodes and 15 internal nodes. Created with Raphaël 2.1.20123456789101112131415161718192021222324252627282930Created with Raphaël 2.1.2depth 4 -------depth 3 ----------depth 2 ----------------depth 1 ----------------------------depth 0 ----------------------------------------------------232221 depth = 4 232221-1-1-1-1 Saving... Server Error Resubmit
0 / 0 Settings <<<>>> 88085183272373442557667488609Created with Raphaël 2.1.28885837273648604257 Saving... Server Error Resubmit
Contact Us || Privacy | | License « 4.4. Comparison :: Contents :: 5.2. Huffman Coding »