Loading [MathJax]/jax/output/HTML-CSS/jax.js
Close
Close Window

DSA Coursenotes

Chapter 3 Week 4

Show Source |    | About   «  3.2. Clean Code   ::   Contents   ::   4.1. Project 2 Design  »

3.3. Binary Search Trees

3.3.1. Binary Search Trees

3.3.1.1. Binary Search Trees

Created with Raphaël 2.1.2
A
B
Created with Raphaël 2.1.2
A
B

3.3.1.2. BST as a Dictionary (1)

3.3.1.3. BST as a Dictionary (2)

3.3.1.4. BST findhelp

0 / 0 Settings
<<<>>>

  • private E findhelp(BSTNode<E> rt, E key) {
  • if (rt == null) { return null; }
  • if (rt.value().compareTo(key) > 0) {
  • return findhelp(rt.left(), key);
  • }
  • else if (rt.value().compareTo(key) == 0) {
  • return rt.value();
  • }
  • else { return findhelp(rt.right(), key); }
  • }
Created with Raphaël 2.1.2
37
24
42
7
32
2
42
120
40
Proficient Saving... Error Saving
Server Error
Resubmit

3.3.1.5. BST inserthelp

0 / 0 Settings
<<<>>>

  • private BSTNode<E> inserthelp(BSTNode<E> rt, E e) {
  • if (rt == null) { return new BSTNode<E>(e); }
  • if (rt.value().compareTo(e) >= 0) {
  • rt.setLeft(inserthelp(rt.left(), e));
  • }
  • else{
  • rt.setRight(inserthelp(rt.right(), e));
  • }
  • return rt;
  • }
Created with Raphaël 2.1.2
37
24
42
7
32
2
42
120
40
30
Proficient Saving... Error Saving
Server Error
Resubmit

3.3.1.6. BST deletemax

0 / 0 Settings
<<<>>>

  • // Delete the maximum valued element in a subtree
  • private BSTNode<E> deletemax(BSTNode<E> rt) {
  • if (rt.right() == null) { return rt.left(); }
  • rt.setRight(deletemax(rt.right()));
  • return rt;
  • }
Created with Raphaël 2.1.2
10
5
20
12
15
Proficient Saving... Error Saving
Server Error
Resubmit

3.3.1.7. BST removehelp

0 / 0 Settings
<<<>>>

  • private BSTNode<E> removehelp(BSTNode<E> rt, E key) {
  • if (rt == null) { return null; }
  • if (rt.value().compareTo(key) > 0) {
  • rt.setLeft(removehelp(rt.left(), key));
  • }
  • else if (rt.value().compareTo(key) < 0) {
  • rt.setRight(removehelp(rt.right(), key));
  • }
  • else { // Found it
  • if (rt.left() == null) { return rt.right(); }
  • else if (rt.right() == null) { return rt.left(); }
  • else { // Two children
  • BSTNode<E> temp = getmax(rt.left());
  • rt.setValue(temp.value());
  • rt.setLeft(deletemax(rt.left()));
  • }
  • }
  • return rt;
  • }
Created with Raphaël 2.1.2
37
24
42
7
32
2
30
42
120
40
Proficient Saving... Error Saving
Server Error
Resubmit

3.3.1.8. .

.

3.3.1.9. BST Analysis

Find: O(d)

Insert: O(d)

Delete: O(d)

d= depth of the tree

d is O(logn) if the tree is balanced.

What is the worst case cost? When?

   «  3.2. Clean Code   ::   Contents   ::   4.1. Project 2 Design  »

nsf
Close Window