3.3. Binary Search Trees¶
3.3.1. Binary Search Trees¶
3.3.1.1. Binary Search Trees¶
ABAB
3.3.1.2. BST as a Dictionary (1)¶
3.3.1.3. BST as a Dictionary (2)¶
3.3.1.4. BST findhelp
¶
0 / 0 Settings<<<>>>
- private E findhelp(BSTNode<E> rt, E key) {
- if (rt == null) { return null; }
- if (rt.value().compareTo(key) > 0) {
- return findhelp(rt.left(), key);
- }
- else if (rt.value().compareTo(key) == 0) {
- return rt.value();
- }
- else { return findhelp(rt.right(), key); }
- }
37244273224212040
3.3.1.5. BST inserthelp
¶
0 / 0 Settings<<<>>>
- private BSTNode<E> inserthelp(BSTNode<E> rt, E e) {
- if (rt == null) { return new BSTNode<E>(e); }
- if (rt.value().compareTo(e) >= 0) {
- rt.setLeft(inserthelp(rt.left(), e));
- }
- else{
- rt.setRight(inserthelp(rt.right(), e));
- }
- return rt;
- }
3724427322421204030
3.3.1.6. BST deletemax
¶
3.3.1.7. BST removehelp
¶
0 / 0 Settings<<<>>>
- private BSTNode<E> removehelp(BSTNode<E> rt, E key) {
- if (rt == null) { return null; }
- if (rt.value().compareTo(key) > 0) {
- rt.setLeft(removehelp(rt.left(), key));
- }
- else if (rt.value().compareTo(key) < 0) {
- rt.setRight(removehelp(rt.right(), key));
- }
- else { // Found it
- if (rt.left() == null) { return rt.right(); }
- else if (rt.right() == null) { return rt.left(); }
- else { // Two children
- BSTNode<E> temp = getmax(rt.left());
- rt.setValue(temp.value());
- rt.setLeft(deletemax(rt.left()));
- }
- }
- return rt;
- }
3724427322304212040
3.3.1.8. .¶
.
3.3.1.9. BST Analysis¶
Find: O(d)
Insert: O(d)
Delete: O(d)
d= depth of the tree
d is O(logn) if the tree is balanced.
What is the worst case cost? When?